Vocabulary mining for information retrieval: rough sets and fuzzy sets

نویسندگان

  • Padmini Srinivasan
  • Miguel E. Ruiz
  • Donald H. Kraft
  • Jianhua Chen
چکیده

Vocabulary mining in information retrieval refers to the utilization of the domain vocabulary towards improving the user's query. Most often queries posed to information retrieval systems are not optimal for retrieval purposes. Vocabulary mining allows one to generalize, specialize or perform other kinds of vocabulary based transformations on the query in order to improve retrieval performance. This paper investigates a new framework for vocabulary mining that derives from the combination of rough sets and fuzzy sets. The framework allows one to use rough set based approximations even when the documents and queries are described using weighted, i.e. fuzzy representations. The paper also explores the application of generalized rough sets and the variable precision models. The problem of coordination between multiple vocabulary views is also examined. Finally, a preliminary analysis of issues that arise when applying the proposed vocabulary mining framework to the Uniied Medical Language System (a state of the art vocabulary system), is presented. The proposed framework supports the systematic study and application of diierent vocabulary views in information retrieval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0306-4573(00)00014-5

Vocabulary mining in information retrieval refers to the utilization of the domain vocabulary towards improving the user's query. Most often queries posed to information retrieval systems are not optimal for retrieval purposes. Vocabulary mining allows one to generalize, specialize or perform other kinds of vocabulary-based transformations on the query in order to improve retrieval performance....

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

TOPOLOGICAL SIMILARITY OF L-RELATIONS

$L$-fuzzy rough sets are extensions of the classical rough sets by relaxing theequivalence relations to $L$-relations. The topological structures induced by$L$-fuzzy rough sets have opened up the way for applications of topological factsand methods in granular computing. In this paper, we firstly prove thateach arbitrary $L$-relation can generate an Alexandrov $L$-topology.Based on this fact, w...

متن کامل

On $L$-double fuzzy rough sets

ur aim of this  paper  is  to introduce the concept of $L$-double fuzzy rough sets in whichboth constructive and axiomatic approaches are used. In constructive approach, a pairof $L$-double fuzzy lower (resp. upper) approximation operators is defined  and the basic properties of them  are studied.From the viewpoint of the axiomatic approach, a set of axioms is constructed to characterize the $L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2001